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ABSTRACT Energy systems around the world are undergoing substantial changes, with an increasing
penetration of Renewable Energy Sources. For this reason, the availability of a pool of suitable forecasting
models specific for the needed time horizon and task is becoming crucial in the grid operation. In addition,
nowcasting techniques aiming at provideing the power forecast for the immediate future, are more often
investigated due to the spread of micro-grids and the need of facing changing electrical market environments.
In this paper a novel comprehensive methodology aiming at computing the PV power forecast on different
time horizons and resolutions is introduced. Moving from the 24-hours ahead prediction provided by the
Physical Hybrid Artificial Neural Network (PHANN), a technique to refine the power forecast for the
following 3 hours with an hourly granularity is analyzed, leveraging on newer information available during
the operations. Moreover, in order to provide the power forecast for the following 30 minutes on a minutely
basis, an innovative modification of a statistical technique is proposed, the robust persistence. The proposed
comprehensive approach allowed to greatly reduce the overall error committed when compared with the
benchmark models. Finally, the proposed methodology is validated and tested on a freely available database
consisting on different parameters recorded at both the meteorological and photovoltaic test facility at
SolarTechLAB, Politecnico di Milano, Milan.

INDEX TERMS Photovoltaic systems, renewable energy sources, power forecast, nowcasting, real case
study.

I. INTRODUCTION
Renewable energy sources (RES), are mainly variable along
time due to the intrinsic nature of the primary source and,
as a consequence, they are considered Non-Programmable
Renewable Sources (NPRS) [1]. The constantly increasing
installed capacity from NPRS leads to urgent problems of
energy and power management, to be addressed on different
time horizons [2]. In addition, electric energy markets in
several countries are carried out continuously, with the need
to accurately predict the energy production from RES, not
only in the day-ahead perspective, but also for the immediate
future [3], [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Dongbo Zhao.

One of the main issues related to the forecasting topic,
is the choice of the more suitable (accurate) prediction model
to be applied according both to the given time horizon and the
task to be accomplished [5], [6]. In fact, when PV modules
are part of the generation units of a complex energy system,
an integrated forecasting approach is useful to address several
scopes. From the Energy Management System (EMS) point
of view, the 24 hours ahead forecast is needed to initially
perform a strategic optimization of the system management,
with the goal of, for example, minimizing the operating cost,
reducing the fuel consumption over the following 24 hours
and properly manage and size the battery energy storage
system (BESS) [7], [8]. Approaching the operating time,
additional refinements are useful to further correct the origi-
nal forecast and tune the dispatching schedule in the so called

194428 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7883-0034
https://orcid.org/0000-0002-1300-556X
https://orcid.org/0000-0002-1005-3224
https://orcid.org/0000-0002-2106-0374


S. Leva et al.: PV Plant Power Nowcasting

intraday or very-short term forecast [9]. Eventually, during
the operations, an integration of the previous forecast for
the following minutes is required for the predictive power
management [10], [11].

In order to address the 24 hours ahead forecast, several
methodologies are adopted in literature. These approaches
are usually divided into 3 main categories: physical, statis-
tical and hybrid models [12]. Physical methodologies rely
on the mathematical modeling of the power plant, hence
describing how it is able to convert the primary source
into electrical power. Statistical models, on the other hand,
are able to retrieve information from a statistical analy-
sis performed on the different input variables. Therefore,
the past time-series data are fundamental. Among the sta-
tistical approaches, regression models and Machine Learn-
ing (ML) techniques are the most diffused. The former move
from the ARMA model, which is a combination of autore-
gressive (AR) and moving average (MA) models [13]. In the
wide group ofML, worth mentioning are the Artificial Neural
Networks (ANN) [14]. Among all, ANN is more suitable
compared with classical statistical methods when non liner
and complicated correlation exists between the data and when
no prior assumption is formulated [15]. In particular, ANN
proved to be a highly reliable method due to its ability of
modeling RES power generation in presence of non-linearity,
as for example between meteorological data and PV power
production [16]. Finally, hybrid models are any combination
of the previous two and are able to leverage on the strengths
of each method they are composed by, while mitigating their
weaknesses [17].

In order to increase the reliability of the PV power fore-
cast, some corrections to the 24-hours ahead predictions are
proposed in literature. In [18] different intraday methodolo-
gies are studied and compared. In particular, SARIMA and
SARIMAX are considered to the scope, concluding that
exogenous input can be omitted without influencing the fore-
cast accuracy. In [19], three ML methods, namely Lasso,
SVR andMLP, are compared, concluding that SVR andMLP
outperform the Lasso model. From the EMS perspective,
in [20], a correction of the unit commitment is introduced on
the basis of the refinement of the PV generation forecast and
its importance is stated. Nevertheless, no clear information on
the methodology are given.

Further reducing the forecast horizon, the main issue is
related to the identification of the sudden spikes and drops
in the PV power production. These fluctuations are mainly
related to the presence of moving clouds which hinder the
solar radiation. For this reason, most of the work found in
literature, relies on the adoption of satellite images and whole
sky images such as [21], [22]. Despite providing an accurate
result in terms of forecast accuracy, those systems require
high investment cost for the equipment and a higher compu-
tational burden due to the image processing techniques. Other
works on the other hand, rely on ML and Deep Learning
algorithm to serve the scope [23]. All the above mentioned
approaches are usually compared with a benchmark which is

represented by the naive persistence. Persistence forecasting
method consists in imposing the next value of the forecast
parameter, equal to the last measured one [24]. In the very
short term, this method achieves very good results, espe-
cially in stationary conditions and presents the advantage of
a negligible computational burden. Nevertheless, the valid-
ity of persistence loses effectiveness as the forecast horizon
increases [25].

In [26], a comparison among different time horizons is
provided, while in the present work, three time horizons
are managed and inspected in an integrated procedure for
a continuous refinement of the prediction. In fact, a com-
prehensive methodology aiming at continuously improving
the PV power forecast provided by the 24-hours ahead logic
is here presented. Moving from this, with a rolling horizon
approach, the power prediction for the following 3 hours
with a hourly resolution is given in the intraday refinement.
Both these predictions are computed through the adoption
of ML techniques. Moreover, the forecast for the following
30 minutes (nowcasting) is carried out every ten minutes with
a minutely granularity and through an innovative adjustment
of the persistence approach. The intraday refinement and
nowcasting methodologies setup is therefore unique, as well
as the forecasting process.

Additionally, the lack of a comprehensive and open-source
datasets, can lead to the difficulty, and sometimes inability,
of selecting the proper methodology for the case under study,
since the site specific conditions (data) used to validate the
procedure are unknown and this can hinder a fair comparison
and choice. For this reason, it is decided to provide a freely
online distributed dataset of the PV related measurements
acquired in the SolarTechLAB facility installed at Politec-
nico di Milano, Milan, Italy [27]. The provided dataset also
includes meteorological measurements to allow the integra-
tion and refinement of the adopted forecasting methods.
The here proposed analysis leverages on this dataset, with
real-time data from the experimental setup.

The paper is structured as follows: in section II, authors aim
at presenting the novel comprehensive methodology, describ-
ing the more suitable forecasting models according to the
specific time horizon and resolution considered. Moreover,
some improvements in the existing forecasting models are
provided. In section III, the performance metrics adopted
to evaluate the proposed forecasting methods are presented.
Section IV, describes in details the SolarTechLAB test facility
located at Politecnico diMilano,Milan and the characteristics
of the freely available provided data. Furthermore, the clean-
ing process of the dataset is detailed in section V. Finally,
in section VI the validation and comparison of the described
forecasting methods is discussed.

II. PV POWER FORECAST: A COMPREHENSIVE
METHODOLOGY
In this section, a novel comprehensive methodology aiming
at assessing the PV power forecast on different time horizons
and resolutions is proposed. The contribution of the presented
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FIGURE 1. Novel comprehensive forecasting scheme: 24-hours ahead forecast, intraday refinement and nowcasting update.

procedure is the integration of three subsequent steps with the
scope of refining the initial forecast. In fact, the methodol-
ogy continuously improves the prediction accuracy achieved
through the 24-hours ahead logic with newer information
acquired in the operations. The algorithms composing the
system, are specifically developed and tailored for the current
scope and represent a novelty on their own.

When PV modules are integrated in broader systems such
as microgrids, approaching the considered time, a finer gran-
ularity is needed to further tune the dispatchable units con-
trol strategy. Therefore, as function of the proximity to the
objective time, three forecast horizons with different time
granularity are here proposed. The presented approach can
be also employed in different scenarios, such as for develop-
ing a bidding strategy, microgrid management, dispatch and
control and for prognostic activity [28].

In Fig. 1, the proposed approach is presented and detailed.
The outer loop, as described in [29], provides the 168 hours
ahead forecast on a hourly basis, leveraging on the weather
predictions for the subsequent hours. Here, the 24-hours fore-
casts are considered for the sake of comparison with other
methods. The two additional loops, on the other hand, allow
refining the aforementioned predictions when, during the
operation, new data are acquired. In particular, the intermedi-
ate cycle addresses the issue of correcting the next three hours
outcome with a hourly granularity, representing the intra-
day refinement. Moreover, the inner loop serves the scope
of providing the next 30 minutes predictions on a minute
basis through the robust persistence procedure. In Table 1 a
summary of the whole approach is reported. In the follow-
ing subsections, the methods to carry out each step of the
novel process are presented. The proposed methodologies are

TABLE 1. Forecast horizon and resolution considered.

implemented in the PV plant facility located at SolarTechLAB

at Politecnoco di Milano. The overall procedure is compared
and technically validated on real case studies and real-time
data from the experimental setup. Finally, the dataset, con-
sisting on different parameters recorded, is freely available
online.

A. 24-HOURS AHEAD POWER FORECAST
The first forecasting step, for example dealingwith the energy
management system in microgrids, is the 24-hours ahead
power forecast with a hourly resolution [2]. This step allows
some initial optimization procedures with the ultimate aim
of attaining the highest exploitation of renewable energy
resources, planning the usage of the energy storage in view
of possible instantaneous fluctuations.

More in general, in many different contexts concerning
the 24-hours ahead PV power forecast, several studies have
been recently carried on [1]. It is common to find in literature
that the best and most promising results were often obtained
through the deployment of Artificial Intelligence (AI) tech-
niques which, relying on available historical data, are able
to generalize trends [13]. In addition, Machine Learning
techniques infer the inherent relationships existing between
the input parameters and the output variable, acquiring the
characteristics of the system. For example, in the PV power
forecast, ANN are able to infer, from historical datasets
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TABLE 2. Training parameters for the intra-day forecast refinement.

provided during the training step, all the peculiarities of the
PV plant such as near shadings, aging and dust on the PV
modules which are possibly affecting the PV plant power
output along with time.

Moreover, as it has been previously said, hybrid methods
have usually well-established that they are capable to join
the forces of the native methods by mitigating weaknesses
of the singles. In the research field of the 24-hours ahead PV
power forecast, it is proved that hybrid models more often
score better performances rather than the others [9], [30].

Therefore the Physic Hybrid Artificial Neural Net-
work (PHANN) forecasting method is adopted. It combines
together both the deterministic Clear Sky Solar Radiation
Algorithm (CSRM) and the stochastic Artificial Neural Net-
work (ANN) method in order to enhance the 24-hours PV
power forecast. In fact PHANN is here employed, to partly
overcome the inaccuracies of the weather forecasts. In previ-
ous works PHANN has been compared to physical [31] and
purely stochastic models [32], successfully overcoming both
of the previous two single methods.

Besides, the reliability of this hybrid method has been
tested on the forecasts of different PV plants. The role of
several training sets varying in the amount of data and number
of trials, which should be included in the ‘‘ensemble forecast’’
was assessed [33].

B. INTRADAY REFINEMENT
Once the 24-hours ahead power forecast are available, further
refinement is required to update the dispatching strategy of
the available units. During the plant operation, newer infor-
mation are continuously collected, that could be valuable to
the scope. The updated data could be either in accordance
with those expected or not, due, for example, to unpredicted
changes in the environmental conditions.

In the following part of this section, a new method aiming
at performing the refinement of the power forecast provided
with the 24-hours ahead logic is presented. In particular,
given the current time t , the refinement Pf ,t+h is provided
for the following 3 hours (h ∈ [1, 2, 3]). The algorithm relies
on Feed Forward Neural Network (FFNN), and the required
inputs needed to produce Pf ,t+h are given in Table 2.

Where:

• DoYt+h, Hourt+h are the day of the year and hour of the
corresponding sample to be forecast;

FIGURE 2. Intraday refinement, actual and forecast power. Dashed lines
refer to future values, while solid lines are past values.

• GHIf ,t+h,24 and GPOAf ,t+h,24 are the predicted irradi-
ation level (both on the horizontal and on the plane of
the array) collected the previous day and already used
to compute the forecast power with the 24-hours ahead
logic;

• Pf ,t+h,24 is the forecast power obtained with the
24-hours ahead logic;

• Ef ,t is the last forecast error available;
• Pm,t , Tm,t and GPOAm,t are the current measurements
for the weather parameters.

In Fig. 2, an exemplifying picture is presented to further
clarify the methodology. In this example the shaded grey
area represents the consolidated period of time. In black,
the power measurements are given, where the dashed line
represents future observations, not available at the time. Sim-
ilarly, the 24-h ahead forecast is displayed in orange. The
blue starred line is representative of the following 3 hours
forecast refinement, while in light blue, by way of example,
the new intraday power forecast refinement computed in the
following hours is reported.

C. NOWCASTING
As shown in literature [25], when greatly reducing the fore-
cast horizon to several minutes ahead, the most effective
techniques are image-based or statistical. The first one,
though providing more promising results, is highly expensive
from a computational point of view and requires a higher
initial investment with respect to the latter due to the addi-
tional cost of the instrumentation. A trade-off is thus needed
among the computational burden and the accuracy. It is worth
highlighting that the final purpose is to provide a useful tool
to assess the PV power nowcast to be later included in a power
and/or energy management system.

To the scope of assessing the PV production in the next
30 minutes (s ∈ [1, 2, . . . , 30]), in this work, two methodolo-
gies leveraging on statistical models are presented, the first
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FIGURE 3. FFNN general structure, with two hidden layers.

one based on persistence models while the other relying
on AI techniques. Both of the implemented methodologies
provide a forecast resolution of 1 minute as summarized
in Table 1.

1) ROBUST PERSISTENCE
The simplest way of forecasting future power production is
represented by the naive persistence [15], generally employed
as a benchmark for accuracy evaluation. It assumes the future
power production at time t to be the same of the last registered
value, at time t − s, where s is the time horizon, as detailed
in (1).

Pt = Pt−s (1)

Some improvement can though be obtained. In fact, sun
irradiation is mainly dependent on two factors, the first one
purely deterministic given by the sun position and the second
mainly stochastic due to atmospheric conditions. While the
latter cannot be inferred through a statistical analysis on
such a short horizon, the first one can be instead addressed.
In order to correct the irradiation level due to the sun position,
the following formulation is proposed:

Pt = Pt−s ·
αt

αt−s
(2)

In (2), the persistence forecast is strengthen by the introduc-
tion of a correction based on the solar altitude angle α. This
method is referred as Robust persistence.

2) ANN BASED
The secondmethodology relies on the adoption of an AI tech-
nique, namely FFNN. The same inputs described in Table 2
are provided to the neural network. The architecture adopted
in this work has the following settings and its general struc-
ture is depicted in Fig. 3:

1) 2 hidden layers;
2) 10 and 6 neurons;

These settings, found according to the methodology
explained in [34], leverage on a sensitivity analysis that
allowed to identified the optimal ANN structure in terms of
number of layers and number of neurons in each layer in order
to minimize the forecasting error.

III. FORECASTING PERFORMANCE METRICS
In order to asses the performance of the described method-
ologies, suitable indexes are needed to evaluate forecating
errors depending on the forecast horizon. These indicators are
usually based on the difference between the measured power
(Pm,t ) and the forecast one (Pf ,t ), referred to the t-th time
sample.

Regarding the nowcast techniques, it is common to refer
the accuracy to the well-knownMean Absolute Error (MAE).
As far as the day ahead and the intra-day refinement are con-
cerned, additional indicators are usually employed to evaluate
daily errors: Normalized MAE (NMAE), which normalizes
MAE by the nominal capacity Pn of the plant,Weighted MAE
(WMAE), which is based on the measured production of
energy in the considered time horizon, and Normalized Root
Mean Square Error (nRMSE), whose definition is based on
the maximum measured power [35].

These metrics are largely used to evaluate the accuracy
of predictions and trend estimations. However, often outliers
occurs when small power values are considered: in such
cases,WMAE and nRMSE could result very large and biased,
showing values above 100%, for instance when the forecast
significantly overestimates the real energy production, which
therefore has a very low value.

Based on these consideration, recently developed addi-
tional indicators are here adopted, aimed to provide a reliable
evaluation of the forecasting accuracy in the range between 0
and 100% [33].

The first indicator is the Envelope-Weighted MAE
(EMAE), defined as:

EMAE =

∑N
t=1 |Pm,t − Pf ,t |∑N

t=1max(Pm,t ,Pf ,t )
· 100 (3)

where the numerator is the same asWMAE,while the denom-
inator is the sum of the maximum between the forecast and
the measured power, thus avoiding values above 100%. This
indicator can be suitably used for any time series forecasting
evaluation and is not dependent on the specific PV applica-
tion.

The second indicator, instead, was specifically defined as
a new indicator focused on PV production: in fact, it is based
on the definition of the Performance Ratio coefficient (PR%),
as it is expressed in the IEC 61724 norm [36]. The Objective
Mean Absolute Error (OMAE) is therefore defined as:

OMAE =

∑N
t=1

∣∣Pm,t − Pf ,t ∣∣∑N
t=1G

cs
POA,t

·
GSTC

Pn
· 100 (4)

where Gcs
POA,t is the theoretical solar irradiance on the plane

of the array, computed by the clear sky solar irradiance model
(CSRM), as described in [37], andGSTC is the solar irradiance
at standard test conditions (i.e. 1000 W/m2).

From (4) it is possible to find a relationship of OMAEwith
the NMAE indicator:

OMAE = NMAE ·
GSTC∑N

t=1G
cs
POA,t

· N (5)
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FIGURE 4. SolarTechLAB test facility at Politecnico di Milano, Milano.

Indeed, this relation highlights how the newly proposed indi-
cator is able to improve the NMAE metric by considering
the performance of the forecast with respect to a modulated
value, i.e. the theoretical irradiation, more descriptive than the
mere nominal power Pn, which is attainable only in the hours
of maximum irradiation.

Once all these error metrics are computed for each
day, in order to analyze the overall indicator for the
period under study, their respective average values are then
evaluated.

IV. EXPERIMENTAL CAMPAIGN
The proposed forecasting techniques have been imple-
mented and validated on a real case study dataset available
at [38]. The test facility is located at Politecnico di Milano,
Milan, on the rooftop of the Department of Energy, at the
SolarTechLAB (STL) [27], at latitude N 45◦ 30’ 10.3’’ and
longitude E 9◦ 9’ 23.66’’. Fig. 4 shows a panoramic image of
the test facility.

A. SOLARTECHLAB TEST FACILITY: PV MODULES
At the SolarTechLAB, several technologies are simultane-
ously installed and tested, like traditional monocrystalline
modules, multi-crystalline, thin film, concentrated PV and
concentrated PV with thermal recovery. In order to test the
modules under different meteorological conditions, each of
them is singularly controlled by a dedicated micro inverter,
which carries out the connection to the grid and optimizes the
DC output through an MPPT DC-DC controller. This config-
uration allows to finely control each module and ultimately
increase the overall production. All PV modules are oriented
with an azimuth γ equal to −6◦30′, assuming 0◦ is the south
positive west, and a tilt θ of 30◦. Anyway, it is possible
to modify the tilt of the modules and the distance among
arrays.

In order to perform the following analysis, a single
monocrystalline module of nominal power of 245 Wp is
considered. The DC power recordings of the year 2017 are
adopted. The measures are on a minutely basis but, due to
various occurrences such as faults and disconnections, not all
the days are available.

TABLE 3. PV module and inverter datasheets.

The PV module and inverter datasheets are reported
in Table 3. In the online available dataset, the DC PV power
measurements are given with a minute resolution.

B. SOLARTECHLAB TEST FACILITY: METEOROLOGICAL
DATA
Installed next to the photovoltaic field, the meteorological
station allows to collect environmental parameters of interest.
It is equipped with two secondary standard pyranometers
to detect the total solar irradiance on horizontal and tilted
plane (30◦). The latter measurement is directly implemented
to define the solar irradiation on the modules, since they
have the same tilt angle. Additionally, a thermohygrome-
ter for temperature and humidity measurements is installed.
The main characteristics of the above mentioned sensors
are reported in Table 4. Remaining sensors are a combined
speed-direction anemometer for wind detection, a rain col-
lector and two additional pyranometers, one for diffuse radi-
ation and the other one for global radiation measurement,
as detailed in Fig. 5. The meteorological station performs
ambient conditions measurements every ten seconds. The
average, maximum, minimum and standard deviation of the
values measured by the sensors are calculated with a minute
frequency and these values are stored into the database.
The minutely averages acquired by the station are available
online.

V. DATASET RECORDING AND PROCESSING
The test facility installed in Politecnico di Milano,
allows to record and store all the variables described in
sections IV-A and IV-B. More into detail, it is possible
to freely download a comprehensive dataset at [38], that
includes both the production of a single PV module and
the meteorological variables. In VII, the description of the
dataset is provided. Worth highlighting is that the provided
data must undergo a cleaning and validation procedure since
some measurements might be affected by some common
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TABLE 4. Solar irradiance and temperature sensor characteristics.

FIGURE 5. SolarTechLAB weather station [27].

problems as single missing values. These operations should
be performed every time real fieldmeasurements are adopted.

A cleaned version of the dataset has been implemented to
carry out the here reported analysis. The first procedure that
the data must undergo is to reconstruct the portion of the daily
curve that is not recorded, the night. In order to do so, the PV
measurements are cross correlatedwith the solar altitude [39],
[40] of the location. This procedure allows to properly detect
the night period and erratic values here registered due to
instantaneous logging problems.

Furthermore, during some days there are some clear evi-
dence of misleading power profile, when the power is really
close to zero, despite appreciable level of radiation. Those
days must be discarded since they are not interesting to our
scope.

Moreover, some minor error in the communication
between the PV inverter and the central monitoring station
might lead to the loss of some isolated samples.

In this work, once the cleaning process is performed, a sin-
gle day of measurements is considered reliable and hence
used, only if it has at least 90% of the theoretically expected
numerosity. Once all the reliable days are identified, in order
to deal with missing values (≤ 10%), linear interpolation is
performed.

FIGURE 6. Intraday refinement: NMAE cumulative distribution
functions (CDF) for the 24-hours ahead forecast and the following
refinements.

FIGURE 7. Intraday refinement: probability density function (PDF) for the
24-hours ahead forecast and the following refinements.

VI. RESULTS AND DISCUSSION
In this section, the main results which have been obtained
through the implementation in SolarTechLAB of the
above-mentioned procedures are presented. Some significant
examples providing the effectiveness of this new compre-
hensive forecasting methodology, on different time horizons,
are here detailed and critically discussed giving a promising
outlook for future implementation.

A. INTRADAY REFINEMENT
When the methodology explained in section II-B is imple-
mented, significant improvement can be observed in the pre-
diction outcome with respect to the 24-hours ahead logic.
In Fig. 6, the obtained results of the intraday refinement are
presented. In this graph, four cumulative distribution func-
tions (CDF) for the error committed in terms of NMAE are
provided, one for each time horizon considered. From the
right, the orange line is representative of the 24-hours ahead
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FIGURE 8. Intraday refinement: comparison of 24-hours ahead forecast, 1 hour ahead intraday refinement and measured power
for four exemplifying days.

TABLE 5. Percent point in terms of NMAE (%) for three selected values of
the probability α.

forecast while the yellow, green and blue lines (H3, H2 and
H1 respectively) correspond to the forecast adjustment pro-
vided 3, 2 and 1 hour in advance. Moving from the y-axis,
as shown by the arrows, the evaluation of the probability of
committing an error lower or equal than the corresponding
value on the x-axis can be made. This can be expressed
in terms of percent point, hence assessing the probability
that the variable X is less than or equal to x for a given α,
as in (6).

F(x) = Pr[X ≤ x] = α (6)

TABLE 6. Forecast comparison between the 24 hours ahead logic and the
1 hour ahead refinement in terms of mean and standard deviation of the
error committed.

In Table 5, three values of x (NMAE) for different choices of
α (0.80, 0.90 and 1) are given. As can be seen, the decrease
of the forecast horizon allows to reduce both the maximum
error committed (α = 1) as well as the overall num-
ber of days in which the error committed exceeds a given
threshold.

In Fig. 7, on the other hand, the Probability Den-
sity Function (PDF) of the error committed (NMAE),
corresponding to the CDF above, are provided. As it
is possible to see, reducing the time horizon, the error
committed decreases accordingly. Moreover, with respect
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TABLE 7. Performance comparison between the 24-hours ahead and intraday refinement methodology for the four selected days.

to the 24 hours ahead prediction, the overall dispersion
around the mean value is lowered as well, as detailed
in Table 6 for a single forecast horizon (H1). Worth high-
lighting is that all the performance metrics reported show
the same improving pattern I , evaluated according to (7),
almost halving both the standard deviation and the mean
value.

I =
Eb − Ep
Eb

· 100 (7)

In this equation, Eb stands for the benchmark performance
while Ep is the error associated to the proposed method. For
example, an improvement I of 36.6% is faced in terms of
mean value and of 40.6% in terms of standard deviation for
the NMAE metric.

In Fig. 8, an example of the improvement provided by
the presented technique is given. In the two upper graph for
the 29th of September and the 3rd of October, the 24-hours
ahead forecast tends to underestimate the power production
from the solar source. Due to the ambient measurements
acquired in the current day, the intraday algorithm was able
to correct the underestimation, returning a more accurate
outcome. The opposite situation can be observed in the two
lower graphs, corresponding to the 19th and 20th of Octo-
ber. The 24-hours ahead prediction, due to inaccuracies in
the weather forecasts, tends to overestimate the real pro-
duction, while the intraday correction, relying on updated
information, is able to capture the real trend and correct the
outcome.

The same conclusion can be drawn inspecting Table 7,
where the performance indicators are reported. For these
exemplifying days, the adoption of the intraday refinement
allows to greatly reduce forecast inaccuracies for all the
analyzed metrics. For example, considering the NMAE,
an improvement of 78.2%, 79.5%, 41.5% 83.2% is assessed
for the 29th of September, 3rd of October, 19th of October and
20th of October respectively.

B. NOWCASTING TECHNIQUES COMPARISON
When the proposed methodologies described in
section II-C are applied for the forecast of the following
30 minutes, the graph in Fig. 9, is produced. In this graph,
the performances (MAE) of the naive persistence model is
presented in blue, while in yellow and orange the smart per-
sistence and ANN are shown respectively. On the x-axis the

FIGURE 9. Nowcasting: comparison among the proposed methodologies,
namely Persistence, ANN and Robust Persistence. In the zoomed box,
the behavior for the first 3 minutes is given.

TABLE 8. Performance comparison among the nowcasting techniques in
terms of MAE (W/min).

forecast horizon can be found. In the zoomed box, an insight
into the first 3 minutes ahead is provided. As can be seen,
the two persistence-based models provide a similar result
when reducing the forecast horizon (≤ 3 min), outperforming
the ANN model. On the other hand, increasing the forecast
horizon (≥ 5 min), the naive persistence model shows the
worst performance accuracy due to the neglected variation
of the solar position, hence of the theoretically available
radiation. When considering ANN results, it is possible
to observe that are not as stable as the other two, due to
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FIGURE 10. Comparison among the measured power and the forecast obtained with the persistence and robust persistence models.

variability and stochasticity in the training process. Worth
mentioning is that ANNs, thanks to their learning process
and to the ability of generalizing trends, take into account
partial shading. Despite this, the overall error committed
by this methodology is larger than the one committed by

the robust persistence, allowing to conclude that, for the
case under study, partial shading do not play a significant
role and considering it would not provide any improvement.
Moreover, from a computational point of view, the robust
persistence methodology is much lighter, needing a single
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TABLE 9. Nowcasting: power forecast accuracy evaluation by means of MAE (W).

algebraic operation compared with the whole neural training
process. Therefore, even though robust persistence and ANN
model show an asymptotic behaviour (≥ 15 min), the former
should be preferred in the nowcasting context. When further
increasing the forecast horizon (≥ 1h), as reviewed in [9],
AImodels, and in particular Physical HybridArtificial Neural
Network (PHANN) [29] generally outperform all the others.

In Table 8 the performances obtained with the three pre-
sented methodologies are given in terms of MAE, consid-
ering different time horizons. The first five minutes are
reported with a minute granularity to appreciate the dis-
crepancies among the models performances. For the sake of
readability, and being lower the variation from one minute
to the other, the time gap is increased to 5 minutes. From
these results, it is possible to grasp how the robust persis-
tence outperforms the other methodologies from the second
minute on.

In Fig. 10 the nowcast for three selected days, together
with the error committed, is shown. The comparison is per-
formed over two different time horizon, 5 and 30 minutes.
The two upper graphs are referred to the 30th May 2017,
the two in the middle are from the 4th of June, while the
lower two are from the 20th of October of the same year.
In these graphs, the smart persistence is compared with a
widely adopted benchmark, the naive persistence. The ANN
methodology has been excluded from the present analysis due
to its worse overall performances as it has been demonstrated
in the previous paragraphs. In near-to-clear-sky weather con-
ditions, as the case of the 30th of May, the proposed method
outperforms the naive persistence on both the 5 and 30 min-
utes time horizon. Furthermore, the beneficial of tacking
into account the solar position correction, hence adopting
the robust persistence, is particularly noticeable when the
forecast horizon is increased. In case of rapidly changing
weather conditions (e.g. the 4th of June) or overcast weather
conditions (e.g. the 20th of October), the improvement given
by the implementation of the described methodology is less
relevant. In the first case, in fact, statistical methods, not
relying on surrounding information such as sky images, fail at
identifying quick power ramps and drops. In these situations,
in fact, there is no evidence of correlation between the power
production across several minutes. In the second one, on the
other hand, being the diffuse component of the radiation
predominant, the dependence on the incidence angle is less
relevant when compared with the other factors playing a role
in the production (e.g. cloudmovement, composition, altitude
and transmittance).

In Table 9, the error (MAE) committed for the three ana-
lyzed days is given for both the considered time horizons and
the selected methodologies. As can be noticed, the robust
persistence allows to greatly increase the forecast accuracy
with respect to the naive persistence during sunny days,
introducing a correction for the solar position. This allowed
to approximately halve the error committed (reduction of the
MAE of 43.0% and 58.8% for 5 and 30minutes ahead respec-
tively). On the other hand, in cloudy or rapidly changing
conditions, the adoption of the proposed methodology, is less
impacting on the overall result (MAE reduction comprised
between 0.8% and 7.5%). Worth highlighting is that, despite
providing a less marked improvement in this particular sit-
uations, the robust persistence does not worsen the overall
forecast accuracy.

One of the main drawbacks regarding statistical method-
ologies, such as the ones presented in this work, is the inabil-
ity of foreseeing ramps, both positive and negative. This may
cause problems, for example, in the control strategy of micro-
grids. In fact, those occurrences are not particularly critical
from the Energy Management System point of view, being
marginal their contribution in terms of energy, but can cause
severe problems from the instantaneous power management
perspective.

VII. CONCLUSION
In the current work, a unique and comprehensive methodol-
ogy aiming at providing a more accurate forecast on different
time scales: from the following 24 hours to few minutes
ahead. The proposed methodology has been assessed and val-
idated on a freely available dataset recorded at SolarTechLAB,
which includes real data from an existing PV plant and from
a meteorological station installed in the same location. More
into detail, moving from the 24-hours ahead forecast, the pre-
dictions are continuously updated including in the analysis
newer information collected in real time. The correction takes
place on two different scales: the first one, 1- to 3-hours
ahead, constitutes the intraday refinement, while the second
one is related to the forecast of the following 30 minutes on
a minutely basis (nowcasting).

The day ahead power forecast is assessed through the
adoption of PHANN, a hybridized machine learning method
effectively adopted and already presented in previous works
here referenced. In order to further refine these predictions
a purely stochastic forecasting method (ANN) is adopted for
the next 3 hours. This technique allows to greatly improve the
accuracy of the PV power previously estimated. For the year
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TABLE 10. Sample chunk of the dataset available at [38].

2017 under analysis, considering the NMAE, a reduction of
36.6% is achieved over the whole period.

As regards nowcasting techniques, it is decided to imple-
ment a novel statistical methods, namely the Robust Persis-
tence, which corrects the naive persistence with information
related to the solar position. This implementation allowed to
further minimize the uncertainty associated with the deter-
ministic variation of the solar radiation. This methodology is
particularly useful under near-to-clear-sky conditions, allow-
ing to achieve a reduction of the forecast error with respect
to the benchmark up to 58.8%. However, it should be high-
lighted that, in all the other cases, the robust persistence
provides slight enhancements and does not worsen the overall
forecast accuracy.

Finally, future steps will include the daily update of the
available dataset in order to validate the here proposed
methodology on a wider case study.

APPENDIX
DATASET STRUCTURE OVERVIEW
The dataset of PV measurements employed in this paper has
been made freely available on the SolarTechLAB website [38]
and in IEEEDataport [41], for scientific research purpose and
further data validation. In particular, the dataset is composed
of the following variables and specifics, with a time resolution
of 1 minute:

• Timestamp: column with time recordings; the data
format is ‘‘dd-MM-yyyy hh:mm:ss’’, with the time
always expressed in Central European Time (CET), i.e.
UTC+01:00, both in winter and in summer, thus DST
offset is not recorded.

• Pm: power recordings from the PV module (W); module
tilt: 30◦.

• Tair: Ambient temperature (◦C)measured by the weather
station described in section IV–B.

• GHI : Global horizontal irradiance (W/m2) measured by
the weather station described in section IV–B.

• GPOA: Global irradiance measured on the tilted plane
(30◦).

• Ws: Wind speed (m/s) measured by the weather station
described in section IV–B.

• Wd : Wind direction (◦), assuming 0◦ east, positive south.

It is worth noticing that the dataset, provided in.csv format,
includes original measurements, i.e. it did not undergo the
cleaning process described in section V, thus these raw data
can be used for any additional post-processing, validation
and further research. When a value is missing in the original
measurements recording, a ‘‘NaN’’ is reported. An example
of the recordings, available at [38], is given in Table 10.
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