New work on PVT modelling published

A new work on a comprehensive PVT model including both electric and thermal energy has been recently published on Applied Thermal Engineering (Volume 133, 25 March 2018, Pages 543-554:
Download the paper Abstract: In this paper, a model for the simulation of a hybrid photovoltaic-thermal collector under transient regime is developed and validated. The model is built using a control volume approach, the collector is divided into small elemental volumes where energy equation is solved using a bi-dimensional finite difference method. The model is validated against experimental data obtained from a two weeks testing in real environmental weather conditions on two hybrid PV/T solar tiles connected in series. An agreement between the experimental and numerical values of the instantaneous power production and the water outlet temperature within ±4 W and within ±0.5 K respectively is found. On a daily basis, the calculated electrical and thermal energies agree within −2.64% to +1.73% and within −4.90% to +7.37% with experimental data, allowing to state that the developed model is quite a reliable tool both for short-term and long-term yield analysis at component or system level.